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Abstract- Upper and lower bounds on the macroscopic elastic and conductivity properties of
perfectly-random heterogeneous media depending on material microgeometry characteristics, par
ticularly those composed of homogeneous cells of spherical (or platelet) form and varying sizes
distributed randomly in the material space (including random cell polycrystals), are given.

1. INTRODUCTION

A random (or disordered) composite is composed of material components distributed
randomly (disorderly) in space and thus it has isotropic macroscopic properties. In Pham
(1994) we considered special random composites called perfectly random (or fully dis
ordered) ones with isotropic components, where besides possible differences in the volume
fractions of phases, the microgeometries of the constituent components are statistically
indistinguishable [the same materials are called symmetric cell materials by Miller (1969)
and infinitely-interchangeable materials by Bruno (1991)]. The upper and lower bounds on
the effective properties of perfectly random multicomponent materials have been derived,
which-in the case of two-component materials-reduce to Miller's shape-independent
ones for symmetric cell materials given in Miller (1969). In his paper, Miller introduced
the subclasses of the composites with definite microgeometrical characteristics including
spherical (or platelet) cell material, which is composed entirely of homogeneous cells of
spherical (platelet) form and varying sizes. He particularly obtained upper and lower
bounds for the conductivity and bulk modulus of two-component cell materials. In this
work we use the same idea to study the properties of multicomponent cell materials and
random cell polycrystals. Based on the approach developed in Le and Pham (1991) and
Pham (1993, 1994, 1995) we derive the explicit bounds for the effective properties of such
materials. In some cases the bounds are shown to be optimal (i.e., to be attained by some
specific models).

2. THE CONDUCTIVITY

From formulae (1) and (8) in Pham (1994) the following bounds on the effective
conductivity (Jc of a perfectly random multicomponent material can be deduced:

(1)

where
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(J~ = 2(Jo, (J~ = 2(J~,

(2)

(3)

(Jo and (J~ are the solutions of the following equations (to make (J** = IT** = 0) :

(5)

(J, and v, (r:J. = 1, ... , n) denote the conductivities and volume fractions of phases; the Greek
indices under the summation sign run on natural numbers from I to n; the geometric
parametersII and 12 are the integrals of harmonic potentials taken over an infinitely small
volume part V,m (of a representative element V), which could be called a forming unit of
the perfectly random multicomponent material (the significance of V,m is that interchanges
ofmaterials between any different parts of {V,m} should not affect the macroscopic property
of the composite) :

(6)

Vo is the volume of V,m (m = I, ... , p,; v, = p,' Vo; r:J. = 1, ... , n) ; the conventional sum
mation on repeating subscripts is assumed;

mfJ:(x) = mfJ.~ - _1I mPr. dy (x E V )'rlf 'r.1f 'r,IJ ,m ,
V rxm V:xm

(7)

It is clear that I! and/2 do not depend on the number of phases forming the composite, the
volume fractions and the material properties of phases, but the particular configuration of
the infinitely small volume parts {V,m}. Once the configuration of the parts {V,m} is given,
one can form a whole subclass of perfectly random composites by assigning different sets
of material properties to {Vam}. All the composites of that subclass share the common
values of geometric parameters 11,/2' So to determine 11,12 it is sufficient to consider a
representative element of that subclass-a two-component material with small volume
fraction of one component. In the two-component case, (4) and (5) reduce to:

(8)

(9)
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Denote112 =1t112 (0 ~112 < 00 asll and12 are positive), the solution O"~ and O"~ of (8) and
(9) can be given as

(10)

(11 )

Following Miller (1969), we consider a subclass of perfectly random materials called
the spherical cell one, which are composed of spherical cells of varying diameters (each cell
is made from only one material). The effective property of the two-component spherical
cell material with small volume fraction of one component (VI « 1) coincides with the
property of the composite with dilute dispersion of spherical inclusions in a continuous
matrix (Miller, 1969; Christensen, 1979; Bruno, 1991):

(12)

At VI « 1, the bounds (1), (10), (11) become asymptotic and coincide with (12) when
112 = O. This suggests but still does not prove thatl12 = 0 is the geometrical characteristic
of spherical cell materials. We should show that at other values of112 the bounds (1), (10),
(11) would not keep (12) inside. At VI « 1, the upper bound (1), (10) has the value:

(13)

The upper bound 0"" in (13) is a monotone function of 112 on [0, (0); at 0"2> 0"1 it is a
decreasing function and attains absolute maximum equal to (12) atl12 = 0; other112> 0
could not bound (12) from above. Thus 112 = 11/12 = 0 is really the geometrical charac
teristic of spherical cell materials. For them (look at (4), (5)) one has the bounds (1) with

(14)

Now we consider another subclass-the platelet cell materials composed of the cells
of platelet forms. The effective property of the two-component platelet cell material with
small volume fraction of one component (VI« 1) is (Miller, 1969; Christensen, 1979;
Bruno, 1991):

(15)

At 0"1 > 0"b (J" in (13) is an increasing function of 112 on [0, (0) and it attains absolute
maximum equal to (15) at 112 = 00. Other positive 112 could not bound (15) from above.
Thus 112 = Id12 = 00 is really the geometrical characteristic of platelet cell materials. For
them the equations (4), (5) become

LVa((Ja-O"~) (L~V_p__ ~I~)2 = 0,
a p (Jp+o"~ (Ja+(J~

(1 1 ) (Vp 1)2LV --- I----- =0.
a a (Ja (J~ p (Jp+(J~ 0""+(J~

(16)

(17)



1748 Pham Due Chinh

Thus (1), (16), (17) are the bounds on the effective conductivity of platelet cell materials.
In the case of two-component platelet cell materials, (16) and (17) are resolved explicitly:

(18)

The laminate model constructed in Pham (1994) also serves to prove the optimality of the
upper bound (1), (18) on the conductivity of two-component platelet cell materials. The
lower bound-as has been shown in that paper-at least is not the optimal one at
VI = V2 = 1/2. There is a simple correspondence between our II2 and Miller's G:

G
= 1+3I12 9G-I

9(1 +I12) , II2 = 3-9G' (1/9 ~ G ~ 1/3, 0 ~I12 ~ 00). (19)

Our results are more general than those of Miller in that they apply not only to two
component but also to multicomponent materials.

3. THE BULK MODULUS

The general bounds on the elastic moduli ke, fJ.e of isotropic composites have been
derived in Pham (1993), which depend on the geometric parameters A~Y and B~Y. For
perfectly-random composites-because of the geometric restrictions imposed-the par
ameters A~Y are reduced to depend only on two positive coefficientsI]J2 (:x =1= f3 =1= y =1= a):

A~Y = v,vpvy(II -I2), A~' = v,(1-v,)[(1-v,)I] +VJ2],

A~P = v,vp[(v, -1)II -VJ2], A~P = v,vp[(1-Vp)I2 +vpII] (20)

[see (6) and Pham (1994)]. Similarly, B~Y depend only on two positive coefficients 9j, 92
(a =1= f3 =1= y =1= a) :

B~Y = v,VpV.J9' -92), B~' = v,(I-v,)[(1-V,)9] +V,92],

B~P = v,Vp[(v,-1)9] -V,92], B~rJ = v,vp[(I-v/J)92 +Vp91],

where 9 I and 92 are defined as II, I2 in (6), (7) :

(21)

(f3r ¥=- am), (22)

Similar to the bounds on the conductivity in (1)-(5), the bounds on the effective bulk
modulus ke (and the bounds on the shear modulus considered in the next section) of a
perfectly random composite composed of n components with elastic moduli k" fJ., can be
derived using the general bounds constructed in Pham (1993) and the relations (20), (21):

(24)

where
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f.1~U and f.1~1 are the solutions of the following equations:

• " ku (" vp 1)211 L.. V,(f.1,-f.10) L.-kkU - -kkU
, p p+ * ,+ *

(
1 1 ) (Vp 1)2I·Lv --- I-----

1 , , f.1, f.1~1 p kp+k~ k,+k~
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(25)

(26)

The bounds (24), (25), (26) depend on the same geometric parameters112 = Ill.f2 discussed
in the previous section. At/12 = 0, (25) and (26) are resolved explicitly:

ku "f.10 = L. v,f.1"

At112 = r:JJ, (25) and (26) reduce to:

f.1~1 = (~V,Ifl, ) - I (27)

" ku (" vp 1)2L.. V,(f.1,-f.1o) L.-kkU - -kkU = 0,
, p p+ * ,+ *

(1 I ) (Vp 1)2LV --- I----- =0.
, , fl, fl~l p kp+k~ k,+k~

(28)

(29)

(24), (27) bound the bulk modulus of spherical cell materials, while (24), (28), (29) bound
that of platelet cell materials. In the case of two-component platelet cell material (28), (29)
yield:

(30)

We construct a laminate composed of a great many thin laminae and assign properties kj,

k2 , f.1], fl2 to these laminae randomly with frequencies according to the volume fractions Vj,

V2 of phases. The laminate is transverse-isotropic and its five elastic constants are calculated
readily [see e.g. Christensen (1979)]. Now viewing the laminate as the base crystal and
following Avallaneda and Milton (1989) one can construct aggregates with maximal and
minimal effective bulk moduli. One can verify that the moduli of the aggregates coincide
with the bounds (24), (30). Thus the bounds (24), (30) for two-component platelet cell
materials are optimal. So the derived bounds for the whole class oftwo-component perfectly
random composites are optimal over half the ranges of parameters. In particular, the upper
bound

(31)
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4. THE SHEAR MODULUS

For the effective shear modulus J.lc of a perfectly random multicomponent material we
have the bounds:

(33)

where

k~, k~, J.l~ and J.l~ can be taken as the solutions of the following equations:

(34)

(35)

(36)

[
8( 1)2 9(kl )2 J

I ." v 3(11k - Ilkl
) + J.lo - 0 (I I - 1/· ')

, ..;- a , 0 2(k~r J.l, J.lo

(
V 1)2 [. L-_P -, - --I +j~' LV, 3(llk,-llk~)

13 J.lp +J.l* J.l, +J.l* '

+ 8(J.l~)2 -9(k~)2 (II -II')J."" (,,_V, I_)2 = o.
----"-.--'-'--1-2~'- J.l., ! J.lo 1... up 1... ( , (37)

2(ko) p y J.l, + J.l* J.lp +J.l*

Once the geometric parameters 1,,12, 9I, g2 for a particular subclass of perfectly random
materials are given, one can obtain from (33), (34), (35) the upper bound and from (33),
(36), (37) the lower bound for the shear modulus of such materials.
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Further we are interested in the subclasses of spherical and platelet cell materials. For
two-component materials (34), (35) reduce to:

(38)

(39)

The effective shear modulus of two-component spherical cell material with small volume
fraction of one component (v J« 1) asymptotically equals the modulus of the composite
with dilute dispersion of spherical inclusions in a continuous matrix:

(40)

For spherical cell materials we have112 = 1L/12 = °and (39) reduces to

(41)

If g12 = gl/g2 = 0, we have J.l'O = VIJ.l1 +V2J.l2 and k'O = vlkl +v2k 2 be the results of
(38), (41), then the upper bound (33) asymptotically equals Jle in (40) at VI « 1. This
suggests that gl2 = gdg2 = 0 might be the geometric characteristic of spherical cell
materials. Keeping in mind that gl2 is independent of the moduli of phases, we should show
that with gl2 > 0 the upper bound (33), (38), (41) does not always bound (40) from above.

SupposegJ2 > O. Take k 1 = k 2 = J.l2 = I. At VI « 1, from (38) we have

u gI2JlI+I
J.lo = .

gl2 + 1

Because gl2 > 0, it is possible to choose a positive III such that

/10 = g12{11 + I = I -6 ({-II = 1-6-£(g\2),
gl2 + 1

£ > 0 is some infinitesimal number.
From (41) we obtain the equation determining positive k~1 :

Subsequently

On the other hand, from (40) we have
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The upper bound (33), (38), (41) at VI « 1 reduces to a form similar to that of /1c in (40)
with the only difference in that p~ takes the place of /1*2' As /1c in (40) is an increasing
function of P*2, the inequality P*2 > p~ implies that Pc is greater than the upper bound,
which is unacceptable. Thus we conclude 912 = 9J!92 = 0 for spherical cell materials.

A similar trick would enable us to confirm that 912 = 91/92 = 00 is the geometrical
characteristic of platelet cell materials.

Finally from (34)-(37) we obtain the following simple expressions of Po, ko, /1~, k~ for
the bounds (33) for multicomponent spherical cell materials:

Po = LV,/1" ko = I v,k", ,

The bounds (33) for platelet cell materials require /10, ko,/1~, k~ satisfying the equations:

Iv,(p,-/1o) (I-vP- __1_)2 = 0,
, I! PI! + /1~ P, + /1~

(
vI )2Lv,(k,-ko) I-P---- =0.

, P PP + tl~ P, + /1~

(
vI )2

Lv,(1/p, -1/p~) I--P-, - --I = 0,
, I! PI! +P* /1, +P*

(
vI )2

Iv,(1lk,-l/k~) I--I!-, - --, = O.
, I! PP +P* /1, +P*

The bounds (33) on the effective shear modulus of platelet cell materials are also simple in
the case of two-component materials, for them:

5. THE RANDOM CELL POLYCRYSTALS

Following Pham (1995) we consider a representative element of a polycrystal that
occupies spherical region V of Euclidean three space R 3

• The center of the sphere V is also
the origin of the Cartesian system of coordinates {XI, X2, X3}' The representative element
consists of n components occupying regions V, c V of equal volumes v, = Vo (the volume
of V is assumed to be the unity), each component is composed of crystals of the same
crystal orientation, rx = I, ... , n. The principal conductivities of the crystals are at; , O"~, O"~.

A random polycrystal is supposed to be represented by such n-component configuration
when n ---+ 00, v, = Vo = lin ---+ 0 and the crystal orientations are distributed randomly in all
directions in the space. To determine the effective conductivity o"c of the random poly
crystalline aggregate, the following mathematical hypotheses have been admitted (Pham
(1995)), as has been done for those with isotropic components in Pham (1994, 1993):
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and for all Ci #- f3 #- y #- Ci :

where

cp'(x) = -~. r Ix-yl-I dy,
4n JV

7
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For such polycrystals, the bounds on the effective conductivity can be deduced (Pham
(1995)) following the same line of Pham (1994) :

(42)

(J£U and (J£I are the solutions of the following equations:

II . {( ((J- (J£U)[I- <((J+ 2(J£U)-1 >- I ((J+ 2(J£U) -1]2>
+ 9<(J- (J£U)([1 - <((J + 2(J£U) - 1 ) - 1((J + 2(J£") -1]2>}

+ 1012 •<(J- (J£U)<[1- <((J+ 2(J£u)-I) -I ((J +2(J£U) -I f >= 0, (43)

11 . {«(1/(J - 1/(J£I)[1 - <(1/(J + 1/2(J£1) - 1 ) -I (1 /(J + 1/2(J£1)-1]2 >

+ 9<I/(J -1/(Jj;I)<[I- <(l/(J+ 1/2(Jj;1) -I) -I (1/(J+ 1/2(J£1) -1]2>}

+ 1012' <I/(J-l/(Jj;I)<[I- <(l/(J + 1/2(J£1) -1) -I (l/(J+ 1/2(J£1) -1]2> = 0, (44)

where the notation <S((J) means "the average value" of the scalar function S((J) :

<S((J) = HS((J1)+S((Ji)+S((J~)].

We have shown that112 = Idl2 = °for spherical cell materials and112 = 00 for platelet cell
materials. Then from (42), (43), (44) one can derive the bounds for the respective poly
crystals. The bounds for the effective conductivity of spherical cell polycrystals, which are
formed entirely from crystals of spherical form (and certainly of varying diameters to fill
all the space of the material) are especially simple as (43) and (44) yield:
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(45)

For perfectly-random multiphase spherical cell polycrystals (when the phases are fully
disordered), we get the bounds (42) with:

m

a~u = I Va(a~a+aj'+a~')/3,
a:=l

[
m (1 1 I)J-'a~{ = 3 I v, - + - + -

, = 1 a~' a~a aj'
(46)

where a~', aj" aj' are the principal conductivities of the phase rx (0: = I, ... , m) having
volume fraction v,.

In Pham (1995) we have suggested (42), (45) as simple approximations for the effective
properties of practical polycrystals. As many practical equiaxed crystal aggregates are
better described by the spherical cell model, for which (42), (45) are exact, than by the
platelet cell model in the other extreme, we get additional support for the practical value
of the simple bounds (42), (45).

6. TWO-DIMENSIONAL PERFECTLY-RANDOM MEDIA

Similarly one can derive respective bounds for two-dimensional perfectly-random
media. The final formulae also are similar with a few modifications given below.

The bounds for the effective conductivity (1), (2), (4), (5) are valid withJl andJ2 taking
the places off, andf2 (Jl andJ2 are the counterparts offl andf2 from (6), (7) in the two
dimensional space) and instead of (3) one has:

a~ = a~, a~ = aL

J12 = Jl/J2 = 0 for circular cell materials andJ12 = 00 for striped cell materials.
In the two-dimensional space we deal with the two-dimensional bulk modulus K, which

is related to the bulk modulus k and shear modulus p by:

K = k+ p/3 (for plane strain state),

K = (l/k+ 1/(4p»-1 (for plane stress state).

The bounds for the effective modulus Kc have the forms similar to those of kc in (24), (25),
(26) with Ka .Jl .J2' K~, K~ taking the places of k,,f, ,f2, k~, k~ and

The bounds for the effective shear modulus keep the forms (33), (34), (36) with 91,92 taking
the places of 91' 92 (9" 92 are the counterparts of 910 92 from (22), (23) in the two
dimensional space) and

the counterparts of (35), (37) are:
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]IID [!(~ __I )-(~-~)l(I-D/3__I )2
a a 2 K, K~ P, P~ /3 P/3 + P~ P, + P~

-" [I (I I) (I I)l" (" D.. 1)2+/21... V - --- - --- 1... D/3 1...--'---- =0
, a 2 K, K~ P. P~ /3 ) Py +P~ P/3 +P~

912 = 9 d92 = 0 for circular cell materials and 912 = 00 for striped cell materials. The bounds
on the effective conductivity of two-dimensional random polycrystals are very simple (for
all]1,12, not only those of circular cell polycrystals!):

pu 0') +O'i
0'0 = --2- (

1 I )-1
0'~'=2 -+-

0') 0')
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